Friday, October 7, 2022

Roedores endémicos del Caribe: una mirada cercana a la microestructura de los incisivos

 Esta semana ha salido una nueva publicación en el Journal of Mammalian Evolution donde junto con un nutrido grupo de colegas describimos la microestructura del esmalte de los incisivos de los roedores caviomorfos caribeños (Marivaux et al., 2022). Los lectores habituales de este blog recordarán que el tema de los roedores caribeños es uno que tocamos con cierta frecuencia, desde las diversas entradas sobre los roedores más antiguos de la región (Partes 1, 2 y 3) hasta un resumen de las diversas especies que han existido en Puerto Rico. Para los que quizás no estén tan familiarizados o necesiten un resumen, les daré un poco de contexto el cual también servirá para entender parte de los motivos detrás del nuevo estudio.

Mapa de distribución de especies actuales de jutías (modificado de Fabre et al., 2014). 

Actualmente en las Antillas existe un grupo de roedores endémicos pertenecientes a la subfamilia Capromyinae, coloquialmente conocidos como jutías. Aunque actualmente hay alrededor de 13 especies (ver mapa arriba), en el pasado, particularmente durante el periodo Cuaternario existían muchas más y gozaban de una distribución más amplia (Woods et al., 2001; Fabre et al., 2014; Courcelle et al., 2019). En adición a esto, existía dos grupos adicionales de roedores caviomorfos endémicos, los Heteropsomyinae y los "Heptaxodontidae" o "jutías gigantes" (Woods et al., 2001; MacPhee, 2009; Upham, 2017). Los Capromyinae y Heteropsomyinae son parte de una radiación endémica de "ratas espinosas" antillanas (Echimyidae), que aparecen en la región por primera vez en el Mioceno temprano de Cuba, representados por la especie Zazamys veronicae (MacPhee & Iturralde-Vinent, 1995). Sin embargo, la relación entre las "jutías gigantes" y otros grupos de roedores caviomorfos ha sido un tema de debate por mucho tiempo, resultando en distintas hipótesis sobre cuales son sus parientes actuales más cercanos (ver resumen en MacPhee, 2011).

Para añadirle a el tema de las "jutías gigantes", en 2020 describimos dos especies de roedores del Oligoceno temprano de Puerto Rico, Borikenomys praecursor y una segunda especie, parecida a Borikenomys, pero más grande (Marivaux et al., 2020). Los resultados del análisis filogenético de ese trabajo sugieren un parentesco entre Borikenomys y Elasmodontomys obliquus ambas especies a su vez cerca a la familia Dinomyidae y con Amblyrhiza inundata en una posición más basal, pero todos dentro del grupo conocido como Chinchilloidea. Mientras que los Capromyinae y Heteropsomyinae son parte de la familia Echimyidae en el grupo Octodontoidea. Elasmodontomys y Amblyrhiza son dos de las especies tradicionalmente clasificadas como parte de Heptaxodontidae ("jutías gigantes"). Por lo cual, nuestros resultado sugieren que Borikenomys y algunas de las "jutías gigantes" posiblemente representan una radiación endémica de Chinchilloidea que llegaron a la región a finales del Eoceno, hace unos 33 millones de años atrás. No obstante, el deseo de utilizar todas las fuentes de información morfológicas posibles nos llevó al trabajo que recién publicamos.

Relaciones evolutivas entre los roedores caviomorfos del Caribe. Octodontoidea (color vino) incluye a las jutías (Capromyinae + Heteropsomyinae), mientras que en azul se observa al clado Chinchilloidea, el cual incluye a Borikenomys praecursor y al menos dos de las "jutías gigantes" (Elasmodontomys obliquus y Amblyrhiza inundata). Modificado de Marivaux et al. (2020).

Para tratar de entender mejor las relaciones entre las distintas especies de roedores endémicos caribeños nos dimos la tarea de analizar la microestructura del esmalte de los dientes incisivos de los Capromyinae, Heteropsomyinae, Heptaxodontidae y Borikenomys (Marivaux et al., 2022). Este tipo de análisis requiere que los incisivos se corten longitudinalmente para luego examinar esa superficie utilizando un microscopio electrónico de barrido (scanning electron microscope), para así observar los detalles de la microestructura de la parte interna del esmalte.

Aquí se observa un incisivo cortado longitudinalmente y las zonas y subzonas del esmalte que se examinan en detalle a diferentes aumentos. Tomado de Marivaux et al. (2022).

Para que nuestro trabajo fuera lo más completo posible, utilizamos especímenes de varias colecciones para así tener representantes de la mayor cantidad de especies de roedores caviomorfos caribeños (actuales y extintos) como fuera posible, con un total de 18 especies. Decidimos estudiar la microestructura del esmalte ya que la misma tiene lo que nos referimos como señal filogenética. En otras palabras, la microestructura de los incisivos de roedores tiene una morfología específica y distintiva para cada grupo y nos puede dar una buena idea respecto a qué grupo pertenecen los especímenes que se están examinando. Esta es una herramienta muy útil, especialmente en casos donde se requiere información adicional o cuando solamente encontramos incisivos y no hay otros dientes. Y esto fue el caso en un trabajo previo, del 2014, donde haciendo este tipo de análisis logramos demostrar que los roedores caviomorfos ya estaban en las Antillas para el Oligoceno temprano (aquí hay más detalles sobre ese trabajo). 

Los caviomorfos presentan varios tipos de organización de los cristales de hidroxiapatita que conforman la parte interna del esmalte de los dientes. Los primeros dos tipos se clasifican como Sbt. 1 y Sbt. 2 incluyendo una etapa transicional que se le conoce como Sbt. 1-2. Estos tipos son los más plesiomórficos (o primitivos), mientras que el tercero, Sbt. 3 es el más derivado o avanzado y es el arreglo con mayor resistencia estructural. Entre los roedores caviomorfos los tipos Sbt. 1 y 2 se ven en tres grupos: Erethizontoidea (e.g. coendúes y puercoespines), Cavioidea (e.g. capibaras y agutíes) y Chinchilloidea (e.g. pacaranas y chinchillas); mientras que el Sbt. 3 es exclusivo de los Octodontoidea (e.g. jutías y ratas espinosas). Cada tipo de microestructura de esmalte aparece muy temprano durante la historia evolutiva de cada grupo, prácticamente, cada grupo ya está diferenciado desde el Eoceno-Oligoceno (Martin, 2004, 2005; Boivin et al., 2019).

Los resultados de nuestro estudio muestran que los Capromyinae (e.g. Isolobodon portoricensis y Capromys pilorides) y los Heteropsomyinae (e.g. Boromys torrei), tienen microestructura de esmalte tipo Sbt. 3 (ver figura abajo). Esto es consistente con su clasificación dentro de Octodontoidea y con resultados de otros estudios morfológicos y moleculares.

Detalle de la microestructura de esmalte de varias especies de caviomorfos caribeños, específicamente los Capromyinae Isolobodon portoricensis y Capromys pilorides, y Heteropsomyinae, representado por Boromys torrei. En las imágenes a la derecha se puede apreciar el mayor grado de entrelazamiento de los cristales de hidroxiapatita que forman el esmalte (modificado de Marivaux et al., 2022).

Mientras tanto, en los "Heptaxodontidae" la microestructura del esmalte observada es de los tipos Sbt.1 en Clidomys sp., y Sbt. 1-2 (intermedio) en Elasmodontomys obliquus y Amblyrhiza sp., el cual también ocurre en Borikenomys praecursor (ver figura abajo). Esta morfología, junto con la de sus molares, sugiere que estas especies están emparentadas y pertenecen dentro de Chinchilloidea, lo cual es congruente con el análisis filogenético que publicamos hace unos años (Marivaux et al., 2020). Adicionalmente, Clidomys y Amblyrhiza también comparten características de la región auditiva con otros Chinchilloidea. 

Detalle de la microestructura de esmalte de varias especies de caviomorfos caribeños, específicamente los "Heptaxodontidae" Elasmodontomys obliquus Amblyrhiza sp., y Borikenomys praecursor. En las imágenes a la derecha se puede observar la organización menos compleja de los cristales de hidroxiapatita que forman el esmalte (modificado de Marivaux et al., 2022).

Sin embargo, estos resultados contrastan con los de un estudio de ADN antiguo (ADNa) donde sugieren que Elasmodontomys es un Capromyinae (Woods et al., 2021), lo cual implicaría que las complejas características dentales compartidas entre Borikenomys, ClidomysElasmodontomys y Amblyrhiza evolucionaron convergentemente. Implica además que en Elasmodontomys ocurrió una reversión evolutiva en la microestructura de los incisivos, de tener un antepasado con Sbt. 3 a tener la versión más plesiomórfica y estructuralmente menos estable de Sbt. 1-2. Esto difiere del patrón general que se observa en los Octodontoidea (incluyendo Capromyinae), los cuales presentan microestructura tipo Sbt. 3 desde finales del Eoceno y sería un tipo de reversión evolutiva sin precedente, ya que la presión selectiva es a reenforzar los incisivos, no a debilitarlos.

Otra alternativa a esta discrepancia entre resultados morfológicos y moleculares es que sea el resultado de un error de muestreo en el estudio de Woods et al. (2021). La probabilidad de esto se debe a que los restos de Elasmodontomys se encuentran frecuentemente en la misma localidad que los de Heteropsomys (e.g. McFarlane, 1999; Vélez-Juarbe & Miller, 2007), e incluso Isolobodon (pers. obs.). Partiendo de esto, la mejor forma de resolverlo será extraer ADNa de restos que sin duda sean de Elasmodontomys (e idealmente otras especies de "jutías gigantes"). También hay que concentrar esfuerzos de campo para encontrar fósiles que ayuden a completar el registro fósil de los roedores caviomorfos caribeños. 


Literatura

Courcelle, M., M.-K. Tilak, Y. L. R. Leite, E. J. P. Douzery, and P.-H. Fabre. 2019. Digging for the spiny rat and hutia phylogeny using a gene capture approach, with the description of a new mammal subfamily. Molecular Phylogenetics and Evolution 136:241–253.

Fabre, P.-H., J. T. Vilstrup, M. Raghavan, C. Der Sarkissian, E. Willerslev, E. J. P. Douzery, and L. Orlando. 2014. Rodents of the Caribbean: origin and diversification of hutias unravelled by next-generation museomics. Biology Letters 10:20140266.

MacPhee, R. D. E. 2009. Insulae infortunatae: establishing a chronology for Late Quaternary mammal extinctions in the West Indies. In: Haynes, G. (ed.) American Megafaunal Extinctions at the End of the Pleistocene. Springer, Dordrecht, pp. 169–193.

MacPhee, R. D. E. 2011. Basicranial morphology and relationships of Antillean Heptaxodontidae (Rodentia, Ctenohystrica, Caviomorpha). Bulletin of the American Museum of Natural History 363:1–70.

MacPhee, R. D. E. and M. A. Iturralde-Vinent. 1995. Origin of the Greater Antillean land mammal fauna, 1: new Tertiary fossils from Cuba and Puerto Rico. American Museum Novitates 3141:1–30.

Marivaux, L., L. W. Viñola-López, M. Boivin, L. Da Cunha, P.-H. Fabre, R. Joannes-Boyau, G. Maincent, P. Münch, N. S. Stutz, J. Vélez-Juarbe, and P.-O. Antoine. 2022. Incisor enamel microstructure of West Indian caviomorph hystricognathous rodents (Octodontoidea and Chinchilloidea). Journal of Mammalian Evolution. DOI: 10.1007/s10914-022-09631-7

Marivaux, L., J. Vélez-Juarbe, G. Merzeraud, F. Pujos, L. W. Viñola López, M. Boivin, H. Santos-Mercado, E. J. Cruz, A. Grajales, J. Padilla, K. I. Vélez-Rosado, M. Philippon, J.-L. Léticée, P. Münch, and P.-O. Antoine. 2020. Early Oligocene chinchilloid caviomorphs from Puerto Rico and the initial rodent colonization of the West Indies. Proceedings of the Royal Society B 287:20192806.

Martin, T. 2004. Incisor enamel microstructure of South America's earliest rodents: implication for caviomorph origin and diversification. In: Campbell, K. E. (ed.) The Paleogene Mammalian Fauna of Santa Rosa, Amazonian Peru. Natural History Museum of Los Angeles County Science Series 40:131–140.

Martin, T. 2005. Incisor enamel schmelzmuster diversity in South America's oldest rodent fauna and early caviomorph history. Journal of Mammalian Evolution 12:405–417.

McFarlane, D. E. 1999. Late Quaternary fossil mammals and last occurrence dates from caves at Barahona, Puerto Rico. Caribbean Journal of Science 35:238–248.

Upham, N. S. 2017. Past and present of insular Caribbean mammals: understanding Holocene extinctions to inform modern biodiversity conservation. Journal of Mammalogy 98:913–917.

Vélez-Juarbe, J., and T. E. Miller. 2007. First report of a Quaternary crocodylian from a cave deposit in northern Puerto Rico. Caribbean Journal of Science 43:273–277.

Vélez-Juarbe, J., T. Martin, R. D. E. MacPhee, and D. Ortega-Ariza. 2014. The earliest Caribbean rodents: Oligocene caviomorphs from Puerto Rico. Journal of Vertebrate Paleontology 34:157–163.

Woods, C. A., R. Borroto-Páez, and C. W. Kilpatrick. 2001. Insular patterns and radiations of West Indian rodents. In: Woods, C. A., & Sergile, F. E. (eds.) Biogeography of the West Indies: Patterns and Perspectives. CRC Press, Boca Raton, pp. 335–353.

Woods, R., I. Barnes, S. Brace, and S. T. Turvey. 2021. Ancient DNA suggests single colonisation and within-archipelago diversification of Caribbean caviomorph rodents. Molecular Biology and Evolution 38:84–95.

Tuesday, January 18, 2022

El Primer Gigante de los Mares: Cymbospondylus youngorum

Cuando pensamos en gigantes marinos, usualmente lo primero que nos viene a la mente son la ballenas, las cuales incluyen el animal más grande de nuestro planeta, la ballena azul (Balaenoptera musculus), que puede alcanzar hasta un largo de 29 metros (95 pies). Durante el Mesozoic, la llamada 'Era de los Dinosaurios' los océanos también tenían gigantes marinos, principalmente ictiosaurios, pliosaurios y mosasaurios. De estos tres grupos de reptiles marinos del Mesozoico, los ictiosaurios se llevan el record por alcanzar los tamaños más grandes. En mi colaboración más reciente, publicada a finales de diciembre en Science, describimos el primer ictiosaurio gigante, quien a la vez es el primer animal que se puede considerar gigante en toda la historia de vida en el planeta. La nueva especie, llamada Cymbospondylus youngorum, fue descubierta en depósitos del Triásico Medio (~242–247 millones de años) en el centro de Nevada y es parte de una fauna, conocida como Fossil Hill Fauna, que incluye siete especies adicionales de ictiosaurios y el pistorauroideo Augustasaurus hagdorni (Leidy, 1868; Merriam, 1906, 1910; Sander et al., 1997; Schmitz et al., 2004; Fröbisch et al., 2006; Fröbisch et al., 2013; Klein et al., 2020; Sander et al., 2021).

Reconstrucción de Cymbospondylus youngorum hecha por mi talentosa colega Stephanie Abramowicz (aquí pueden ver algunos de sus otros trabajo).

Con un cráneo de alrededor dos metros de largo, estimamos que el cuerpo de Cymbospondylus youngorum alcanzaba un largo de alrededor de 17 metros, lo cual es cerca al tamaño de los cachalote (Physeter macrocephalus), y unos cuantos metros más pequeño que el icitiosaurio nombrado más grande, Shonisaurus sikanniensis, que se estima medía alrededor de 21 metros (Nicholls and Manabe, 2004; Sander et al., 2021). En adición a S. sikanniensis, se han encontrado restos de otros ictiosaurios más grandes, con tamaños que se acercan a los 25 metros (Lomax et al., 2018), pero tanto estos, como S. sikanniensis, son del Triásico tardío, o sea, geocronológicamente más jóvenes que C. youngorum.
El holotipo de Cymbospondulus youngorum: vistas dorsal (A-B) y ventral (C-D) del cráneo y mandíbula; detalle de la dentadura (E-F), y húmero (H-K). El cráneo se encuentra actualmente en exhibición en el Museo de Historia Natural del Condado de Los Angeles.

El holotipo de Shonisaurus sikanniensis, el cual tuve la oportunidad de ver en una visita reciente al Royal Tyrrell Museum en Alberta, Canada.

La Fauna de Fossil Hill representa el conjunto más diverso de ictiosarios que se conoce al momento, con especies que van desde los dos a 17 metros de largo. Esto tomó lugar alrededor de 246 millones de años atrás, apenas unos seis millones después de la extinción Permo-Triásica, (la peor de la historia y donde se extinguió alrededor de 90% de las especies en el planeta) e, interesantemente, unos tres millones de años desde que aparecen los primeros ictiosaurios . Todo esto sugiere una pronta recuperación en los océanos y que los icitiosaurios se diversificaron y alcanzaron tamaños enormes rápidamente. Con esta información en mano, decidimos explorar en mayor detalle la estructura e interacciones tróficas (quién se come a quién) en este antiguo ecosistema y tazas evolutivas en los ictiosaurios.

Además de los reptiles marinos, la Fauna de Fossil Hill incluye peces, conodontes, ammonites y posiblemente coleoideos (cefalópodos sin concha). Una de las preguntas principales que nos hicimos sobre este ecosistema antiguo fue cuan estable era este ecosistema dominado por depredadores (i.e. los ictiosaurios) aún cuando todavía no existían los productores primarios que encontramos actualmente en los océanos. Para contestar esta pregunta estimamos la masa corporal, número de individuos y requerimientos energéticos de las especies de la Fauna de Fossil Hill y usamos esa información para explorar distintos modelos computacionales de flujo de energía para determinar la estabilidad de esa red trófica. 

Arriba, matriz de interacciones tróficas (quién se come a quién) que utilizamos para establecer los modelos de flujo de energía entre los miembros de la Fauna de Fossil Hill.
Abajo, gráfica con los valores obtenidos con los distintos modelos de red trófica que usamos. Los distintos resultados son en base a los valores que estimamos para el total de la biomasa para peces e invertebrados con partes duras. 

Los resultados de este análisis confirmaron que el ecosistema de la Fauna de Fossil Hill si era estable, aún si solo consideramos a los amonites como los principales productores primarios y que la cadena alimenticia era más corta en comparación a las actuales. Otro aspecto interesante de esta parte de nuestro estudio es que los resultados sugieren que había comida suficiente para la presencia (hipotética) de una especie adicional de ictiosaurio gigante que consumiera alimento a granel (bulk feeding/filter feeding), como hacen los misticetos (ballenas barbadas).

El otro análisis que hicimos fue comparar las tazas de evolución de gigantismo entre ictiosaurios y cetáceos. Para esto hicimos unos análisis utilizando filogenias calibradas y estimados de tamaño de cuerpo para la mayor cantidad de especies posible de ambos grupos, que en el caso de los ictiosaurios logramos incluir 48 especies y 269 especies de cetáceos. El resultado principal de este análisis fue concluir que los ictiosaurios alcanzaron tamaños gigantes bien temprano y bien rápido en su historia evolutiva! El tiempo transcurrido desde su origen al momento que alcanzaron tamaños gigantes fue mucho más corto que en los cetáceos, que como sabemos, también alcanzaron tamaños gigantes, pero a lo largo de un periodo más largo de tiempo. En ambos grupos se detectaron aumentos en el tamaño de cuerpo en más de una ocasión, y en algunos grupos de cetáceos también observamos disminución en tamaño, particularmente en los Kogiidae (los cachalotes pigmeos y parientes extintos). 

Gráfica comparando la taza de evolución de tamaño de cuerpo entre ictiosaurios (líneas azules) y cetáceos (líneas blancas). El eje 'Y' representa los valores de tamaño de cuerpo (aumentan hacia arriba), mientras que el eje 'X' es el tiempo transcurrido (en millones de años) desde el origen de los grupos. Aquí también se puede ver la similitud en tamaño entre Cymbospondylus youngorum (arriba a la derecha) y un cachalote (abajo a la derecha).

Previamente se habían publicado trabajos enfocados en la evolución de gigantismo en los misticetos (ballenas barbadas) y nuestros resultados son congruentes con los de ese estudio (Slater et al., 2017). Sin embargo, nuestro trabajo es el primero en examinar la evolución de tamaño de cuerpo que incluye todos los grupos de cetáceos, desde los más antiguos hasta los actuales. Nuestros resultados sugieren además que la evolución de gigantismo en los cetáceos está relacionado con cambios en la alimentación. En el caso de los misticetos parece relacionarse con la pérdida de dientes y alimentación a granel (bulk feeding), mientras que en los odontocetos con alimentación raptorial y búsqueda de presas a grandes profundidades.

De izquierda a derecha: yo con una réplica del cráneo de un rorcual Minke (Balaenoptera acutorostrata), al centro Tom Young quien junto con su esposa son los fundadores de Great Basin Brewing Co. y a la derecha Martin Sander (University of Bonn), uno de los autores principales del trabajo, con una réplica del cráneo de Cymbospondylus youngorum. El epíteto específico "youngorum" es en honor a los Young por su apoyo a los proyecto de Martin en Nevada y a nuestro museo.

Como investigadores frecuentemente nos gusta comparar ictiosaurios con cetáceos, así que este proyecto fue muy satisfactorio ya que logramos investigar y comparar detalladamente algunos de los aspectos evolutivos que comparten ambos grupos. Para este proyecto utilizamos una combinación de métodos paleontológicos tradicionales (descripciones, medidas y observaciones, etc.) y modelos computacionales lo cual facilitó la exploración de patrones macroevolutivos usando el registro fósil de estos tetrápodos marinos. Nuestros resultados, como ya mencioné, fueron muy interesantes y no hubiese sido posible sin el diverso equipo de expertos en nuestro grupo de trabajo. Aún así, este fue un primer paso ya que queda mucho más por conocer de estos antiguos ecosistemas marinos y evolución de tamaño de cuerpo en otros grupos de vertebrados que se readaptaron a una vida en el mar.

Referencias

Fröbisch, N. B., P. M. Sander, and O. Rieppel. 2006. A new species of Cymbospondylus (Diapsida, Ichthyosauria) from the Middle Triassic of Nevada and a re-evaluation of the skull osteology of the genus. Zoological Journal of the Linnean Society 147:515–538.

Fröbisch, N. B., J. Fröbisch, P. M. Sander, L. Schmitz, and O. Rieppel. 2013. Macropredatory ichthyosaur from the Middle Triassic and the origin of modern trophic networks. Proceedings of the National Academy of Sciences 110(4):1393–1397.

Klein, N., L. Schmitz, T. Wintrich, and P. M. Sander. 2020. A new cymbospondylid ichthyosaur (Ichthyosauria) from the Middle Triassic (Anisian) of the Augusta Mountains, Nevada, USA. Journal of Systematic Palaeontology 18(14):1167–1191.

Leidy, J. 1868. Notice of some reptilian remains from Nevada. Proceedings of the Philadelphia Academy of Sciences 20:177–178.

Lomax, D. R., P. De la Salle, J. A. Massare, and R. Gallois. 2018. A giant late Triassic ichthyosaur from the UK and a reinterpretation of the Aust Cliff 'dinosaurian' bones. PLoS ONE 13(4):e0194742.

Merriam, J. C. 1906. Preliminary note on a new marine reptile from the Middle Triassic of Nevada. University of California Publications–Bulletin of the Department of Geology 5:5–79.

Merriam, J. C. 1910. The skull and dentition of a primitive ichthyosaurian from the Middle Triassic. University of California Publications–Bulletin of the Department of Geology 5:381–390.

Nicholls, E. L., and M. Manabe. 2004. Giant ichthyosaurs of the Triassic—a new species of Shonisaurus from the Pardonet Formation (Norian:late Triassic) of British Columbia. Journal of Vertebrate Paleontology 24:838–849.

Sander, P. M., O. C. Rieppel, and H. Bucher. 1997. A new pistosaurid (Reptilia:Sauropterygia) from the Middle Triassic of Nevada and its implications for the origin of the plesiosaurs. Journal of Vertebrate Paleontology 17(3):526–533.

Sander, P. M., E. M. Griebeler, N. Klein, J. Velez-Juarbe, T. Wintrich, L. J. Revell, and L. Schmitz. 2021. Early giant reveals faster evolution of large size in ichthyosaurs than in cetaceans. Science 374:eabf5787.

Schmitz, L., P. M. Sander, G. W. Storrs, and O. Rieppel. 2004. New Mixosauridae (Ichthyosauria) from the Middle Triassic of the Augusta Mountains (Nevada, USA) and their implications for mixosaur taxonomy. Palaeontographica Abt. A 270:133–162.

Slater, G. J., J. A. Goldbogen, and N. D. Pyenson. 2017. Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proceedings of the Royal Society B 284:20170546.